Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4,6-Trichloro-1,3,5-trimethylborazine

Markus Weinmann, Jürgen Nuss and Martin Jansen*

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Correspondence e-mail: m.jansen@fkf.mpg.de

Received 21 September 2007; accepted 26 September 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (N–B) = 0.004 Å; R factor = 0.061; wR factor = 0.173; data-to-parameter ratio = 24.7.

The title compound, $(CH_3NBCl)_3$ or $C_3H_9B_3Cl_3N_3$, is the first crystallographically characterized trialkyltrichloroborazine derivative. It crystallizes with two independent molecules in the asymmetric unit. The B_3N_3 rings are essentially planar, with B–N distances ranging from 1.428 (5) to 1.449 (4) Å, and with B–N–B and N–B–N angles in the ranges 118.4 (3)–119.4 (3) and 120.7 (3)–121.8 (3)°, respectively. The two independent molecules are staggered parallel along [x, 0, 0] and $[x, \frac{1}{2}, \frac{1}{2}]$, most probably due to the formation of weak intermolecular C–H···Cl hydrogen bonds.

Related literature

The title compound was first obtained by Burg & Kuljian (1950) and Nöth & Sprague (1970) *via* different reaction routes. For the synthesis of the borazine precursor compound dichloroborylmethyltrichlorosilylamine used in the present study, see: Kroschel (2001); Kroschel & Jansen (2002); Weinmann *et al.* (2007). For structure determinations of the related compounds (HNBCl)₃, (Ph₃NBCl)₃, [CH₃NB(NMe₂)]₃ and (CINBCl)₃, see: Coursen & Hoard (1952); Schwarz *et al.* (1977); Rodriguez & Borek (2006); Haasnoot *et al.* (1972), respectively.

Experimental

Crystal data

c = 15.054 (8) Å
$\alpha = 90.446 \ (12)^{\circ}$
$\beta = 91.727 \ (12)^{\circ}$
$\gamma = 114.380 \ (10)^{\circ}$
$V = 969.7 (9) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 0.89 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min} = 0.665, T_{\max} = 0.957$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.173$ S = 1.025513 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13A\cdots Cl12^{i}$	0.98	3.04	3.846 (4)	140
$C21-H21C\cdots Cl13^{ii}$	0.98	2.97	3.938 (4)	170
$C22-H22C\cdots Cl13^{iii}$	0.98	2.99	3.778 (4)	138
$C21-H21A\cdots Cl23^{iv}$	0.98	3.01	3.942 (4)	160
$C22-H22B\cdots Cl21^{iv}$	0.98	3.03	3.783 (4)	134
$C23-H23C\cdots Cl22^{iv}$	0.98	3.09	4.018 (5)	158
		1 . 1 (**)		1

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 2; (iii) x - 1, y - 1, z; (iv) -x + 1, -y, -z + 2.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 2005); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The authors acknowledge financial support from the Max Planck Society and the German Research Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2148).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SADABS. Version 2007/4. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burg, A. B. & Kuljian, E. S. (1950). J. Am. Chem. Soc. 72, 3103-3107.
- Coursen, D. L. & Hoard, J. L. (1952). J. Am. Chem. Soc. 74, 1742-1750.
- Dowty, E. (2005). ATOMS. Version 6.3. Shape Software, Kingsport, Tennessee, USA.
- Haasnoot, J. G., Verschoor, G. C., Romers, C. & Groeneveld, W. L. (1972). Acta Cryst. B28, 2070–2073.
- Kroschel, M. (2001). PhD thesis, University of Bonn, Germany.
- Kroschel, M. & Jansen, M. (2002). German Patent application DE 1 004 542 8A1.
- Nöth, H. & Sprague, M. (1970). J. Organomet. Chem. 22, 11-22.
- Rodriguez, M. A. & Borek, T. T. (2006). Acta Cryst. E62, 03341-03343.
- Schwarz, W., Lux, D. & Hess, H. (1977). Cryst. Struct. Commun. 6, 431–436. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Weinmann, M., Kroschel, M., Jäschke, T., Nuss, J., Jansen, M., Kolios, F.,
- Weinmann, M., Kroschel, M., Jaschke, I., Nuss, J., Jansen, M., Kollos, F., Morillo, A., Tellaeche, C. & Nieken, U. (2007). J. Mater. Chem. Submitted.

9812 measured reflections 5513 independent reflections

3775 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 100 (2) K $0.50 \times 0.20 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.060$

223 parameters

 $\Delta \rho_{\text{max}} = 0.89 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.59 \text{ e} \text{ Å}^{-3}$

Acta Cryst. (2007). E63, o4235 [doi:10.1107/S1600536807047241]

2,4,6-Trichloro-1,3,5-trimethylborazine

M. Weinmann, J. Nuss and M. Jansen

Comment

We recently reported on the first approach towards the continuous synthesis of molecular precursors of high-temperature Si/C/B/N ceramics. $Cl_3SiN(Me)BCl_2$ (DMTA, dichloroborylmethyltrichlorosilylamine) was obtained in a straightforward reaction from silicontetrachloride, methylamine, and borontrichloride (Kroschel, 2001; Kroschel & Jansen, 2002; Weinmann *et al.*, 2007). DMTA is thermally instable. At elevated temperature it decomposes by SiCl₄ elimination to yield *B*,*B*',*B*"-tri-chloro-*N*,*N*,*N*"-trimethylborazine, (CH₃NBCl)₃ (Scheme 2).

The title compound was first obtained by Burg & Kuljian (1950) by chance from equal gas volumes of MeN(SiH₃)₂ and BCl₃. Initially, Me(SiH₃)NBCl₂ formed at 195 K but on warming to room temperature it lost ClSiH₃ and quantitatively converted into (CH₃NBCl)₃. Similarly, (CH₃NBCl)₃ was obtained by Nöth & Sprague (1970) from MeN(SiMe₃)₂ and BCl₃. The N atom in DMTA is clearly less basic than those in Me(SiH₃)NBCl₂ or Me(SiMe₃)NBCl₂. Therefore, decomposition (*i.e.* SiCl₄ elimination) proceeds slower and requires higher temperatures. On the other hand the retarded degradation results in the formation of single crystals of (CH₃NBCl)₃ which accumulate as colorless needles.

Figure 1 shows the structures of the two independent molecules which are nearly identical. B, N, C, and Cl atoms are in a strictly planar arrangement with B and N atoms spanning an almost perfect hexagon. In average, the B—N distances measure 1.437 and 1.435 Å; the maximum deviations from these values are 0.012 and 0.008 Å, respectively. The B—N bonds are thus only slightly longer than those found in (HNBCl)₃ (1.413 Å; Coursen & Hoard, 1952) and (Ph₃NBCl)₃ (1.428 Å; Schwarz *et al.*, 1977). In contrast, there is neither evidence for distortion such as in (CH₃NB(NMe₂))₃ (Rodriguez & Borek, 2006) nor for the existence of "long" and "short" B—N bonds as reported for (CINBCl)₃ (1.398 *versus* 1.451 Å; Haasnoot *et al.*, 1972), indicating a perfect π -delocalization of the N electron lone pairs. This is reflected by the B—N—B and N—B—N bond angles which approach 120°. However, the former (average 118.8 and 118.9°) are slightly smaller than the latter (121.1°). B—Cl and N—C bond lengths are similar to those reported in the literature for other *B*-chloro and *N*-methyl borazine derivatives. From Figure 2 it is evident that molecules 1 and 2 are staggered parallel along [a, 0, 0] and [a, 1/2, 1/2], respectively. H…Cl separations of *ca* 3 Å (H…Cl distances are thus within the sum of the Van-der-Vaals radii of hydrogen and chlorine) indicate that weak H…Cl hydrogen bridges enforce the special arrangement (see Table).

Experimental

DMTA was synthesized by a continuous gas phase procedure starting from SiCl₄ and MeNH₂. As-obtained Cl₃SiNHMe was directly reacted with BCl₃. Solid amine hydrochloride byproducts were removed by filtration through inductively heated ceramic filters. Details of the experimental setup are found elsewhere (Weinmann *et al.*, 2007). Raw DMTA was purified by fractional distillation. Subsequent heating to 323–343 K over 4–6 weeks resulted in partial decomposition by SiCl₄ elimination and formation of crystalline (CH₃NBCl)₃.

Refinement

H atoms were placed geometrically and were refined with $U_{iso}(H) = 1.5U_{eq}(C)$ of the attached carbon atom.

Figures

Fig. 1. Structure of the two independent (CH₃NBCl)₃ molecules, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing diagram of (MeNBCl)₃.

Fig. 3. The formation of the title compound.

2,4,6-Trichloro-1,3,5-trimethylborazine

Crystal data	
C ₃ H ₉ B ₃ Cl ₃ N ₃	Z = 4
$M_r = 225.91$	$F_{000} = 456$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.547 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 7.720 (4) Å	Cell parameters from 4305 reflections
b = 9.167 (5) Å	$\theta = 2.4 - 30.9^{\circ}$
c = 15.054 (8) Å	$\mu = 0.89 \text{ mm}^{-1}$
$\alpha = 90.446 \ (12)^{\circ}$	T = 100 (2) K
$\beta = 91.727 \ (12)^{\circ}$	Plate, colourless
$\gamma = 114.380 \ (10)^{\circ}$	$0.50 \times 0.20 \times 0.05 \text{ mm}$
$V = 969.7 (9) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer	5513 independent reflections
Radiation source: fine-focus sealed tube	3775 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
T = 100(2) K	$\theta_{\text{max}} = 30.0^{\circ}$
ω scans	$\theta_{\min} = 1.4^{\circ}$

Absorption correction: multi-scan (SADABS; Bruker, 2007)	$h = -10 \rightarrow 10$
$T_{\min} = 0.665, T_{\max} = 0.957$	$k = -12 \rightarrow 12$
9812 measured reflections	$l = -20 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.173$	$w = 1/[\sigma^2(F_o^2) + (0.0958P)^2 + 0.0723P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
5513 reflections	$\Delta \rho_{max} = 0.89 \text{ e} \text{ Å}^{-3}$
223 parameters	$\Delta \rho_{min} = -0.58 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. H atoms were placed geometrically applying restrains of isotropic displacement parameters 1.5 times of the attached carbon atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl11	0.73512 (13)	0.15475 (10)	0.43707 (5)	0.0267 (2)
Cl12	0.82179 (13)	0.78156 (10)	0.37427 (5)	0.0277 (2)
Cl13	0.68452 (13)	0.53493 (10)	0.71585 (5)	0.0266 (2)
N11	0.7664 (4)	0.4683 (3)	0.41615 (16)	0.0196 (5)
N12	0.7499 (4)	0.6409 (3)	0.54139 (16)	0.0202 (5)
N13	0.7120 (4)	0.3594 (3)	0.56975 (16)	0.0194 (5)
B11	0.7372 (5)	0.3398 (4)	0.4775 (2)	0.0189 (6)
B12	0.7754 (5)	0.6179 (4)	0.4491 (2)	0.0195 (6)
B13	0.7169 (5)	0.5096 (4)	0.6006 (2)	0.0197 (6)
C11	0.7896 (6)	0.4449 (4)	0.32036 (19)	0.0260 (7)
H11A	0.9217	0.4625	0.3106	0.039*
H11B	0.7581	0.5213	0.2857	0.039*
H11C	0.7044	0.3354	0.3015	0.039*

C12	0.7621 (6)	0.7972 (4)	0.5763 (2)	0.0269 (7)
H12A	0.7591	0.8645	0.5265	0.040*
H12B	0.8813	0.8511	0.6114	0.040*
H12C	0.6541	0.7789	0.6140	0.040*
C13	0.6809 (5)	0.2273 (4)	0.6338 (2)	0.0256 (7)
H13A	0.5563	0.1959	0.6601	0.038*
H13B	0.7808	0.2648	0.6809	0.038*
H13C	0.6852	0.1350	0.6023	0.038*
Cl21	0.56506 (13)	0.33268 (10)	1.08219 (5)	0.0285 (2)
Cl22	0.00324 (13)	-0.28065 (10)	1.13894 (5)	0.02597 (19)
C123	0.17428 (14)	-0.06954 (11)	0.79348 (5)	0.0287 (2)
N21	0.2749 (4)	0.0253 (3)	1.09944 (15)	0.0195 (5)
N22	0.1009 (4)	-0.1550 (3)	0.97015 (16)	0.0199 (5)
N23	0.3520 (4)	0.1197 (3)	0.94460 (16)	0.0208 (5)
B21	0.3843 (5)	0.1462 (4)	1.0388 (2)	0.0196 (6)
B22	0.1358 (5)	-0.1254 (4)	1.0643 (2)	0.0183 (6)
B23	0.2113 (6)	-0.0326 (4)	0.9112 (2)	0.0211 (7)
C21	0.3086 (5)	0.0565 (4)	1.19702 (19)	0.0255 (7)
H21A	0.4276	0.0493	1.2155	0.038*
H21B	0.2028	-0.0232	1.2284	0.038*
H21C	0.3177	0.1640	1.2114	0.038*
C22	-0.0423 (5)	-0.3115 (4)	0.9340 (2)	0.0264 (7)
H22A	-0.1314	-0.3666	0.9802	0.040*
H22B	0.0226	-0.3778	0.9149	0.040*
H22C	-0.1123	-0.2930	0.8831	0.040*
C23	0.4641 (5)	0.2474 (4)	0.8818 (2)	0.0272 (7)
H23A	0.5060	0.3526	0.9113	0.041*
H23B	0.3841	0.2427	0.8291	0.041*
H23C	0.5754	0.2303	0.8639	0.041*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cl11	0.0341 (5)	0.0167 (4)	0.0302 (4)	0.0115 (3)	0.0014 (3)	-0.0038 (3)
Cl12	0.0372 (5)	0.0175 (4)	0.0258 (4)	0.0086 (3)	0.0025 (3)	0.0054 (3)
C113	0.0358 (5)	0.0223 (4)	0.0191 (3)	0.0093 (4)	0.0019 (3)	-0.0017 (3)
N11	0.0208 (14)	0.0157 (13)	0.0197 (11)	0.0049 (11)	0.0006 (9)	-0.0004 (9)
N12	0.0253 (15)	0.0128 (12)	0.0214 (11)	0.0068 (11)	-0.0011 (9)	-0.0033 (9)
N13	0.0200 (14)	0.0157 (13)	0.0209 (11)	0.0058 (11)	-0.0008 (9)	0.0011 (9)
B11	0.0184 (17)	0.0146 (16)	0.0228 (15)	0.0060 (13)	-0.0003 (11)	-0.0018 (12)
B12	0.0191 (17)	0.0178 (16)	0.0201 (14)	0.0061 (14)	0.0002 (11)	0.0018 (12)
B13	0.0204 (18)	0.0160 (16)	0.0208 (14)	0.0059 (14)	-0.0018 (11)	-0.0012 (11)
C11	0.033 (2)	0.0240 (17)	0.0197 (13)	0.0105 (15)	0.0014 (12)	-0.0019 (11)
C12	0.031 (2)	0.0136 (16)	0.0336 (16)	0.0066 (14)	0.0007 (13)	-0.0059 (12)
C13	0.0322 (19)	0.0210 (17)	0.0236 (14)	0.0110 (15)	0.0011 (12)	0.0055 (12)
Cl21	0.0276 (5)	0.0161 (4)	0.0356 (4)	0.0031 (3)	-0.0027 (3)	-0.0027 (3)
Cl22	0.0296 (5)	0.0193 (4)	0.0248 (3)	0.0056 (3)	0.0044 (3)	0.0049 (3)
Cl23	0.0404 (5)	0.0282 (4)	0.0186 (3)	0.0153 (4)	0.0003 (3)	-0.0011 (3)

N21	0.0236 (15)	0.0160 (13)	0.0185 (11)	0.0080 (11)	-0.0014 (9)	-0.0013 (9)
N22	0.0229 (15)	0.0140 (13)	0.0212 (11)	0.0063 (11)	-0.0031 (9)	-0.0025 (9)
N23	0.0239 (15)	0.0158 (13)	0.0227 (12)	0.0081 (11)	0.0040 (10)	0.0024 (9)
B21	0.0184 (18)	0.0125 (16)	0.0269 (16)	0.0058 (14)	-0.0009 (12)	-0.0013 (12)
B22	0.0216 (18)	0.0112 (15)	0.0237 (15)	0.0084 (14)	0.0018 (12)	0.0009 (11)
B23	0.0254 (19)	0.0194 (17)	0.0195 (14)	0.0103 (15)	0.0009 (12)	-0.0010 (12)
C21	0.035 (2)	0.0230 (17)	0.0175 (13)	0.0106 (15)	-0.0006 (12)	-0.0017 (11)
C22	0.031 (2)	0.0170 (16)	0.0275 (15)	0.0065 (15)	-0.0030 (13)	-0.0045 (12)
C23	0.032 (2)	0.0180 (16)	0.0299 (16)	0.0085 (15)	0.0066 (13)	0.0049 (12)
Geometric pa	urameters (Å, °)					
C111—B11		1 791 (4)	C121-		1.80	4 (4)
Cl12B12		1.791 (4)	C127		1.00	
Cl12 B12		1.304(3) 1.787(3)	C122	B23	1.79	3 (4)
N11_B12		1.767(5) 1.428(5)	N21_	_B21	1.75	7 (4)
N11_B12		1.120(3) 1.449(4)	N21_	_B21	1.13	9 (1) 0 (5)
N11-C11		1.443 (4)	N21_	_C21	1.48	9 (4)
N12		1.436 (4)	N22_	_B23	1.40	0(4)
N12 B12		1.435(4)	N22_	_B23	1.43	7(4)
N12 D13		1.445 (4)	N22_		1.45	9(4)
N12 C12		1.407 (4)	N22_		1.40	7 (1) 4 (4)
N13B13		1.425(4)	N23_	_B23	1.45	4 (5)
N13-C13		1.498 (4)	N23_		1.49	+ (<i>5</i>) 8 (<i>4</i>)
C11—H11A		0.9800	C21-	-H21A	0.98	00
C11—H11B		0.9800	C21	_H21R	0.98	00
C11—H11C		0.9800	C21	_H21C	0.98	00
C12—H12A		0.9800	C21	_H22A	0.98	00
C12—H12R		0.9800	C22	–H22R	0.98	00
C12—H12C		0.9800	C22	-H22C	0.98	00
C13_H13A		0.9800	C22	_H23A	0.98	00
C13—H13B		0.9800	C23	_H23R	0.98	00
C13—H13C		0.9800	C23-	-H23C	0.98	00
D12 N11 E	011	110 4 (2)	B21	N21 D22	110	0 (2)
D12—N11—E	511 511	119.4 (3)	D21-	-N21 $-D22$	119.	0 (3) 8 (2)
B12—N11—C	211 Y11	120.3(2)	B21-	-N21 - C21	119.	o (3) 1 (3)
B11—N11—C	212	120.1(3)	B22-	-N21 - C21	121.	f (3)
B12—N12—L	515 712	110.4(3)	B23-	-N22 - D22	110.	2(3)
B12—N12—C	712	121.2(3)	B25-	N22 C22	120.	$\frac{1}{3}$
B11_N13_F	213	120.4(3)	B22-	_N22_C22	121.	1(3)
B11_N13_C	13	110.5(3)	B21-	-N23-C23	11).	5 (3)
B13_N13_0	213 213	121.3(3)	B21	-N23-C23	120.	5 (3)
N13_B11_N	J11	120.0(3)	N23_	N21	120	7 (3)
N13R11(111	119.6(2)	N23_		120.	9(2)
N11R11(2111	119.5 (2)	N21_	-B21 $-C121$	119.	4(2)
N11—B12—N	J12	120.9(3)	N22-	-B22-N21	11).	2 (3)
N11—B12—C	2112	119.8 (2)	N22-	-B22-Cl22	119	0(3)
N12R12(2112	119.2 (3)	N21_	-B22 Cl22	119.	7 (2)
N13N13N	J12	121.8(3)	N22_	N23	11).	3 (3)
			1,22		121.	- (0)

N13—B13—Cl13	118.8 (2)	N22—B23—Cl23	119.2 (3)
N12—B13—Cl13	119.3 (2)	N23—B23—Cl23	119.5 (2)
N11—C11—H11A	109.5	N21—C21—H21A	109.5
N11—C11—H11B	109.5	N21—C21—H21B	109.5
H11A—C11—H11B	109.5	H21A—C21—H21B	109.5
N11—C11—H11C	109.5	N21—C21—H21C	109.5
H11A—C11—H11C	109.5	H21A—C21—H21C	109.5
H11B-C11-H11C	109.5	H21B—C21—H21C	109.5
N12—C12—H12A	109.5	N22—C22—H22A	109.5
N12-C12-H12B	109.5	N22—C22—H22B	109.5
H12A—C12—H12B	109.5	H22A—C22—H22B	109.5
N12—C12—H12C	109.5	N22—C22—H22C	109.5
H12A—C12—H12C	109.5	H22A—C22—H22C	109.5
H12B-C12-H12C	109.5	H22B—C22—H22C	109.5
N13—C13—H13A	109.5	N23—C23—H23A	109.5
N13—C13—H13B	109.5	N23—C23—H23B	109.5
H13A—C13—H13B	109.5	H23A—C23—H23B	109.5
N13—C13—H13C	109.5	N23—C23—H23C	109.5
H13A—C13—H13C	109.5	H23A—C23—H23C	109.5
H13B—C13—H13C	109.5	H23B—C23—H23C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C13—H13A···Cl12 ⁱ	0.98	3.04	3.846 (4)	140
C21—H21C···Cl13 ⁱⁱ	0.98	2.97	3.938 (4)	170
C22—H22C···Cl13 ⁱⁱⁱ	0.98	2.99	3.778 (4)	138
C21—H21A····Cl23 ^{iv}	0.98	3.01	3.942 (4)	160
C22—H22B···Cl21 ^{iv}	0.98	3.03	3.783 (4)	134
C23—H23C···Cl22 ^{iv}	0.98	3.09	4.018 (5)	158

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*-1, *y*-1, *z*; (iv) -*x*+1, -*y*, -*z*+2.

Fig. 3